Northwestern Engineering

# Phase Change Materials for Energy Efficient Housing Applications

MSE 395 Kevin, Jung Yen Chou 2008/05/29

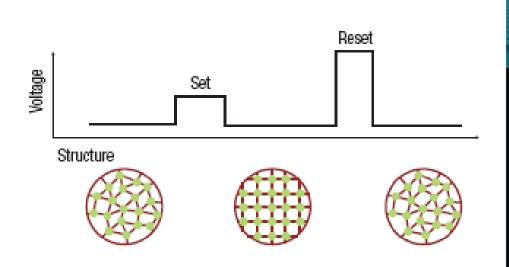


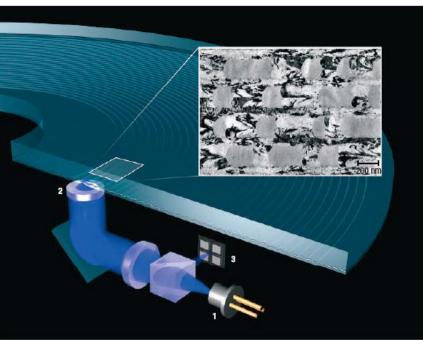
# **Overview**

- Introduction and Background
  - Examples of phase change materials (PCMs)
- Solid-liquid-gas phase change materials
  - Characteristics
  - Classification and development
  - Applications and examples
- Thermochromic phase change materials
  - Optical properties
  - Applications and examples
- Conclusion

## Northwestern Engineering

# Introduction and background


- Any material goes through a phase change
  - Temperature (thermo-)
  - Electric charge (electro-)
  - Acidity, pH (halo-)
  - Pressure (piezo-)
- Two Classifications
  - Solid-liquid-gas phase change
  - Crystal structural phase change


Phase change causes changes in:

- Mechanical
- Magnetic
- Electrical
- Thermo
- Optical

# **PCMs example - Rewritable DVDs**

- Ge-Sb-Te (GST) chalcogenide alloy
  - Crystalline  $\leftarrow \rightarrow$  Amorphous phase change using laser
  - High intensity / short pulse : Amorphous
  - Low intensity / long pulse : Crystalline



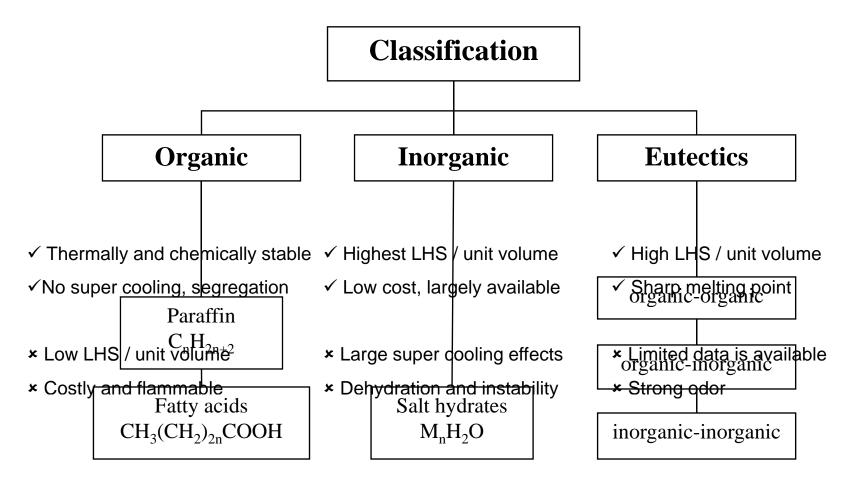




# Solid-liquid-gas PCM

- **Solid-liquid**, solid-solid, liquid-gas, solid-gas
- Latent heat storage (LHS)
  - Heat is absorbed  $\rightarrow$  melt  $\rightarrow$  liquid
  - Heat is released  $\rightarrow$  solidify  $\rightarrow$  solid
  - Heat of fusion ( $\Delta H_{fusion}$ )
- Different from sensible heat storage (SHS) !
  - Heat is stored by raising the temperature of material
  - Specific Heat capacity ( $C_p$  or  $C_v$ )

## **Solid-liquid-gas PCM - Characteristics**


#### Selection criteria

| Thermodynamic<br>Properties | (i)<br>(ii)<br>(iii)<br>(iv)<br>(v) | Melting temperature in desired temperature range<br>High latent heat of fusion per unit volume<br>High specific heat, high density and thermal conductivity<br>Small volume change on phase transformation<br>Congruent melting |
|-----------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kinetic<br>Properties       | <b>(i)</b><br>(ii)                  | High nucleation rate to avoid super cooling<br>High rate of crystal growth to meet demand of heat recovery<br>from the storage system                                                                                           |
| Chemical<br>Properties      | (i)<br>(ii)<br>(iii)<br>(iv)        | <b>Complete reversible freeze/melt cycle</b><br>No degradation after a large number of freeze/melt cycle<br>No corrosiveness to the construction materials<br>Non-toxic, non-flammable and non-explosive material               |
| Economic<br>Properties      | (i)<br>(ii)                         | Low cost<br>Large-scale availabilities                                                                                                                                                                                          |



## Solid-liquid-gas PCM – Classification

• Large numbers of PCMs available -5 to 190 °C



## Northwestern Engineering

## Solid-liquid-gas PCM – Examples

| Materials                                                                                            | Melting point<br>(°C) | Heat of fusion<br>solid ←→ liquid<br>(kJ / kg) | Specific Heat<br><i>solid / liquid</i><br>(kJ / kg ºC) | Density<br><i>solid / liquid</i><br>(kg / m³) |
|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| Water                                                                                                | 0                     | 333.6                                          | 2.05 / 4.18                                            | 999 / 1000                                    |
| Lauric acid<br>$CH_3(CH_2)_{10}COOH$                                                                 | 41 – 43               | <u>211.6</u>                                   | 1.76 / 2.27                                            | 1007 / 862                                    |
| Mn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O +<br>MnCl <sub>2</sub> 4H <sub>2</sub> O (4 wt%) | 15 – 25               | 125.9                                          | 2.34 / 2.78                                            | <u>1795 / 1728</u>                            |
| Capric acid (65 mol%) +<br>Lauric acid (35 mol%)                                                     | 18 – 20               | 140.8                                          | 1.97 / 2.24                                            | - / -                                         |

#### Commercial grade PCMs

| E23 ™ - EPS Ltd    | 23 | 155.0 | 0.69 / -    | 1475 / -  |
|--------------------|----|-------|-------------|-----------|
| RT27 ™ - Rubitherm | 28 | 146.0 | 1.80 / 2.40 | 870 / 750 |

## Northwestern Engineering

# Solid-liquid-gas PCM – Applications 1

- Macro-encapsulation
  - Failed due to poor thermal conductivity
  - Tend to solidify at the edges
- Micro-encapsulation
  - Easily incorporated into construction materials
- Steel, polypropylene
- Usually embedded with high conductivity materials with high conductive structure

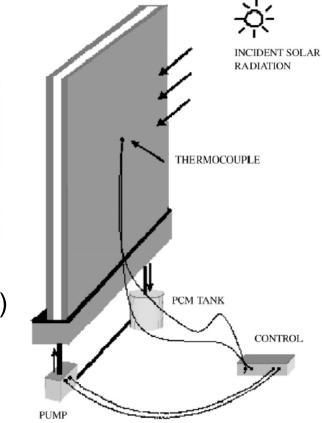








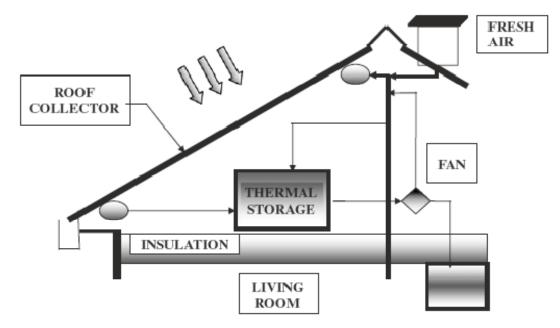



## Northwestern Engineering

## Solid-liquid-gas PCM – Applications 2

- Passive storage systems
  - Wallboards
  - Ceiling boards
  - Building blocks
  - Movable curtain (shutter)




- PCM wallboards
  - Lightweight 120m<sup>2</sup> house (Madison, WI)
  - Saves up to 15% annual energy (3GJ)
  - Optimal ~1 to 3 °C above RT



## Northwestern Engineering

# Solid-liquid-gas PCM – Applications 3

- Active storage systems
  - Floor heating and cooling
  - Air-based heating and cooling Uni. South Australia in 1997

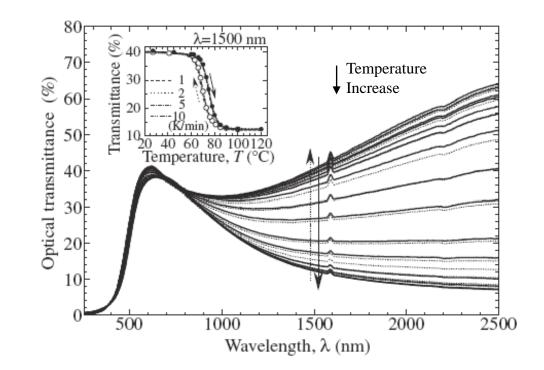


- Day time or High Temp.
  - Collect solar heat
  - Circulate indoor hot air to cool down
- Night time or Low Temp.
  - Vent and circulate to warm indoor air



# Solid-liquid-gas PCM – Concerns

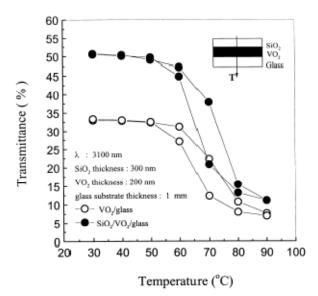
- Many manufacturers data not verified
  - Discrepancy with independent research
- No commonly accepted quantitative criteria
- Lack knowledge on other properties
  - Kinetics mass and heat transport process
  - Chemical storage and safety concerns

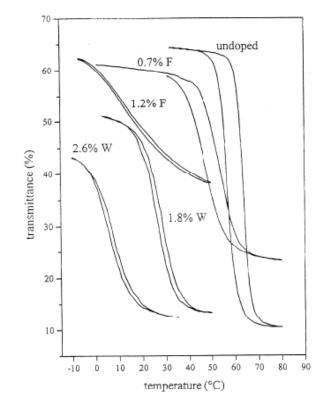

# **Thermochromic PCM**

- Optical properties vary in response to temperature
  - Ex) Liquid crystals, Dyes, ZnO, PbO, VO<sub>2</sub>
- Idea: "*intelligent*" thin film coating on windows
  - Darken (hot) state: Reflect IR radiation while transmitting visible
  - Transparent (cold) state: Allow IR for maximum solar heat gain
  - Increase thermo and visual comfort !
- VO<sub>2</sub> phase transition closest to RT (68-70 °C)
  - Band gap ~0.7eV
  - Low temperature semiconducting phase
  - High temperature metallic phase

## Northwestern Engineering

## **Thermochromic PCM – optical property 1**


- Optical transmittance temperature dependency
  - IR transmittance decrease from 40 to 0 % as T increase
  - Visible transmittance relatively constant
- Reversible
- Independent of ∆T rate




## Northwestern Engineering

## **Thermochromic PCM – optical property 2**

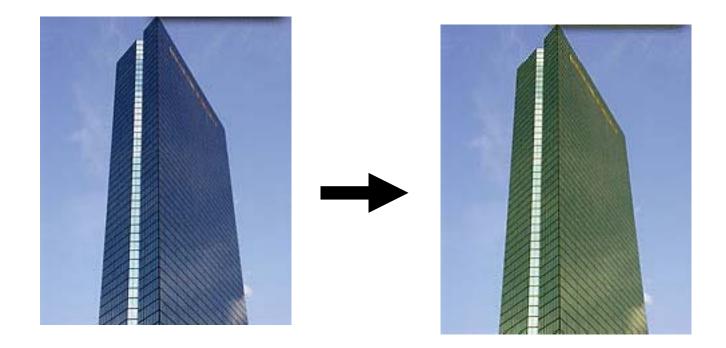
- W- F- doped VO<sub>2</sub> decreases transition temperature
  - Within human comfort range for practical applications
- Anti-reflection coating
  - Better thermochromic transition







# **Thermochromic PCM – Concerns**


- Atmospheric pressure CVD produced thin film deteriorates easily
- Sol-gel produced thin film more robust, yet :
  - Delamination occurs in repeated thermal cycle
  - Oxidize easily to form other VO<sub>x</sub>
  - High cost
- RT thin film is yellow, undesirable for commercial use



# Conclusions

- PCMs are promising advanced materials for energy efficient housing applications
- Solid-liquid PCMs
  - Latent Heat storage units to maintain constant temperature
  - Detailed knowledge on properties to select optimum PCMs
- Thermochromic PCMs
  - Windows coating to provide thermo/visual comfort
  - Yellow buildings in the near future ?!





Questions and comments?